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Summary

The Plantae comprising red, green (including land plants),

and glaucophyte algae are postulated to have a single
common ancestor that is the founding lineage of photosyn-

thetic eukaryotes [1, 2]. However, recent multiprotein
phylogenies provide little [3, 4] or no [5, 6] support for this

hypothesis. This may reflect limited complete genome data
available for red algae, currently only the highly reduced

genome of Cyanidioschyzon merolae [7], a reticulate gene
ancestry [5], or variable gene divergence rates that mislead

phylogenetic inference [8]. Here, using novel genome data

from the mesophilic Porphyridium cruentum and Calliar-
thron tuberculosum, we analyze 60,000 novel red algal genes

to test the monophyly of red + green (RG) algae and their
extent of gene sharing with other lineages. Using a gene-

by-gene approach, we find an emerging signal of RG
monophyly (supported by w50% of the examined protein

phylogenies) that increases with the number of distinct
phyla and terminal taxa in the analysis. A total of 1,808

phylogenies show evidence of gene sharing between
Plantae andother lineages.Wedemonstrate that a richmeso-

philic red algal gene repertoire is crucial for testing contro-
versial issues in eukaryote evolution and for understanding

the complex patterns of gene inheritance in protists.

Results and Discussion

Assessing Red and Green Algal Monophyly Based
on Exclusive Gene Sharing

Here, with 36,167 expressed sequence-tagged (EST) unigenes
from Porphyridium cruentum and 23,961 predicted proteins
from Calliarthron tuberculosum, we report analyses of
>60,000 novel genes from mesophilic red algae. Of the 36,167
P. cruentum unigenes (6.7-fold greater than the gene number
[5,331] from Cyanidioschyzon merolae [7]), 13,632 encode
proteins with significant BLASTp hits (e value % 10210) to
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sequences in our local database, in which we included the
23,961 predicted proteins from C. tuberculosum (see Table
S1 available online). Of these hits, 9,822 proteins (72.1%,
includingmanyP. cruentumparalogs)werepresent inC. tuber-
culosum and/or other red algae, 6,392 (46.9%) were shared
withC.merolae, and 1,609were found only in red algae. A total
of 1,409 proteins had hits only to red algae and one other
phylum. Using this repertoire, we adopted a simplified recip-
rocal BLAST best-hits approach to study the pattern of exclu-
sive gene sharing between red algae and other phyla (see
Experimental Procedures).We found that 644 proteins showed
evidence of exclusive gene sharing with red algae. Of these,
145 (23%) were found only in red + green algae (hereafter,
RG) and 139 (22%) only in red + Alveolata (Figure 1A).
In comparison, we found only 34 (5%) proteins in red +Glauco-
phyta, likely as a result of the limited availability of glaucophyte
data in the database. As we restricted this search by requiring
a larger number of hits per query (x) from both phyla, the
proportion of RG proteins increased relative to other taxa.
For instance, the number of red + Alveolata and red +Metazoa
proteins was reduced from 139/1/0 and from 55/3/
0 when x R 2 (644 proteins), x R 10 (96 proteins), and x R 20
(22 proteins), respectively (Figures 1A–1C). This BLASTp
analysis is based on the implicit assumption that significant
similarity among a group of sequences indicates a putative
homologous relationship (i.e., a shared common ancestry).
This approach could potentially be misled by convergence at
the amino acid level that results in high similarity among non-
homologous sequences (i.e., homoplasy [9, 10]). Alternatively,
because RG are primarily photoautotrophs, exclusive gene
sharing could be explained by these lineages having retained
acommon set of ancestral genes thatwere lost in other eukary-
otes. With these potential issues in mind, we suggest that
exclusive gene sharing (as defined by significant reciprocal
BLASTp hits) provisionally favors the RG grouping.

Gene Sharing between RG and Other Lineages
Using a phylogenomic approach, we generated maximum-
likelihood (ML) trees for each of the 13,632 P. cruentum
proteins with significant hits to the local database. One of
the major confounding issues in phylogenomic analysis is
inadequate and/or biased taxon sampling. To reduce such
biases in our inference of gene phylogeny, we restricted our
analysis to trees that containR3 phyla (per tree) and analyzed
these phylogenies based on the minimum number of terminal
taxa per tree (n), ranging from 4 to 40 (Figure 1D). The expec-
tation was that the impact of inadequate taxon sampling
on our interpretation of the data would be minimal in trees
with large n. Applying these restrictions, n R 4 returned
1,367 trees that contained red algae positioned within
a strongly supported (bootstrap R 90%) monophyletic clade
(Figure 1D); the majority of these trees (1,129 of 1,367; 83%)
had n R 10. Among the 1,367 trees, 329 showed exclusive
RG monophyly, of which 53 trees defined RG + glaucophytes
(i.e., were putatively Plantae-specific). The number of trees
that recovered the RG remained similar between cases of
n R 4 and n R 10, with only 71 trees having n between 4 and
9. As n increased, the proportion of RG groupings remained

http://dx.doi.org/10.1016/j.cub.2011.01.037
http://dx.doi.org/10.1016/j.cub.2011.01.037
mailto:hsyoon@bigelow.org
mailto:bhattacharya@aesop.rutgers.edu
mailto:bhattacharya@aesop.rutgers.edu


A

C

B

D

Figure 1. Analysis of Predicted Proteins from the Red Alga Porphyridium

cruentum

(A–C) The distribution of phyla with exclusive BLASTp hits to P. cruentum

proteins where the number of hits per query (x) is as follows, (A) x R 2, (B)

x R 10, and (C) x R 20. The colors indicate the different phyla that share

proteins exclusively with P. cruentum.

(D) The percentage of maximum-likelihood (ML) protein trees (raw numbers

shown in the bars for the five most frequently found groupings) that support

the monophyly of red algae with other eukaryote phyla (bootstrap R 90%).

The impact of increasing the number of terminal taxa in each tree (n) on

these proportions is shown for the progression from 4/10/20/30/

40. The total number of trees for each category is shown on top of each

bar. The category ‘‘Red-Green (RG) exclusive’’ refers to trees in which these

two phyla form an exclusive clade, whereas ‘‘Red-Green (RG) shared’’ refers

to trees in which red-green monophyly is well supported but other phyla are

found within this clade (i.e., due to gene sharing). See also Figure S1.
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Figure 2. Plantae Evolution and Gene Sharing

(A) Phylogeny of a gene of unknown function that is putatively specific to

Plantae.

(B) Phylogeny of a gene encoding a putative phosphoglyceride transfer

protein, SEC14, with a well-supported monophyly (bootstrap 95%) of

plants, red algae, the glaucophytes, and diatoms and a monophyly (boot-

strap 100%) between Porphyridium cruentum and green algae (including

other plants). RAxML [30] bootstrap support values R 60% based on

100 nonparametric replicates are shown at the nodes. Red algae are shown

in boldface and glaucophytes in gray. The unit of branch length is the

number of substitutions per site. See also Figure S2.
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similar across all categories, although the number of trees
supporting this clade gradually decreased. These estimates
reflect our current database and will change as more genome
data become available. Figure 2A shows the phylogeny of
a putative Plantae-specific gene (of unknown function) that
appears to have undergone an ancient gene duplication in
the Plantae ancestor followed by subsequent duplications
(particularly among land plants).
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Figure 3. Schematic Representation of the Putative Tree of Life Showing the

Extent of RG Gene Sharing with Other Eukaryote and Prokaryote Phyla

The branch shown as a dashed line represents ambiguous relationships

among the lineages to the right. The color key indicates the number of trees

found for each ‘‘foreign’’ (non-RG) phylum.
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In these analyses, we also examined instances of RG
monophyly in which other taxa interrupted this clade, e.g.,
Stramenopiles, presumably resulting from endosymbiotic/
horizontal gene transfer (E/HGT). We referred to such
instances as ‘‘RG shared’’ (Figure 1D), whereby there was
a strongly supported monophyly (i.e., bootstrap R 90%) of
RG algae with other non-Plantae lineages. We applied the
condition that RG shared clades include R75% of all terminal
taxa in a tree, and within this clade, a majority (>50%) of the
tips defined red and green algae. Using this definition, we
found an additional 413 trees that support RGmonophyly (Fig-
ure 1D). Therefore, at nR 4, a total of 742 (54%) of 1,367 trees
returned by our pipeline supported the RG union (bootstrapR
90%). At a less stringent bootstrap threshold of R70%, 997
(46%) of 2,167 trees showed support for RG monophyly (Fig-
ure S1). An example of a phylogeny showing nonexclusive
gene sharing with Plantae lineages is shown in Figure 2B for
a putative phosphoglyceride transfer protein, SEC14. The
phylogeny shows a well-supported monophyly (bootstrap
95%) of plants, red algae (Galdieria sulphuraria and C. mero-
lae), the glaucophyte Cyanophora paradoxa, and diatoms.
The diatom gene likely arose via secondary endosymbiotic
gene transfer from a red algal donor [11]. In addition, a diver-
gent red algal-derived gene copy is present in P. cruentum
that groups with green algae and other gene copies found in
plants (bootstrap 100%). Although complete genome data
from glaucophytes and other red algae are required to delin-
eate the extent of gene duplication and convergence between
these two lineages, this phylogeny illustrates two key proper-
ties of protist gene and genome evolution that pose challenges
to the inference of lineage relationships: ancient gene duplica-
tion (e.g., multiple copies in plants) and loss (i.e., putatively of
a gene copy in green algae, e.g., Ostreococcus spp.), and
nonlineal gene sharing involving algal lineages.

The next most frequently found positions of red algae
in these trees were as sister to Stramenopiles (168, 12%),
Alveolata (91, 7%), Excavata (68, 5%), and Cryptophyta (66,
5%). Increasing the minimum number of terminal taxa per
tree (n) from 4 through 40 (while maintaining R3 phyla) did
not affect the relative proportion of trees that support
RG monophyly, but the number of cases with other well-
supported phylogenetic affiliations (e.g., red + Metazoa,
red + Fungi) fell sharply (Figure 1D). When we relaxed the
bootstrap threshold to R70%, the patterns reported here
generally remained unchanged (Figure S1) but allowed the
identification of single-protein markers that may prove useful
for delineating the eukaryote tree of life (e.g., V-type ATPase
I 116 kDa subunit family; Figure S2; see also [12]).

We found 1,808 trees that showed strong support (at boot-
strap R90%) for the monophyly of RG with other ‘‘foreign’’
taxa. Figure 3 shows the number of these trees that contain
different foreign phyla within the well-supported RG clade.
The sources of the foreign genes are depicted in a schematic
representation of the putative tree of life. The most common
partners of gene sharing with RG (i.e., barring significant
phylogenetic artifacts in our approach) are Stramenopiles
(e.g., the diatoms; 1,264 proteins), bacteria other than Cyano-
bacteria (1,108), Haptophyta (839), Cyanobacteria (827),
Alveolata (622), and Metazoa (473). The majority of these
proteins (1,322 of 1,808) are shared between RG and two or
more other phyla, demonstrating the complex evolutionary
history of the algal genes. We recognize that our results are
biased by the unbalanced contribution of available genome
data from microbial eukaryotes in our database (e.g., diatoms
are gene rich, cryptophytes are gene poor). In addition, the
detection of gene transfer using phylogenetic approaches
is susceptible to a number of technical limitations such as
modularity [13, 14] and amelioration [15, 16] of the transferred
genes, which result in underestimation of the extent of HGT in
gene-by-gene surveys. Nevertheless, our findings indicate
that single-gene or multigene analysis of Plantae should take
into account extensive gene sharing vis-à-vis other eukaryote
lineages (e.g., nongreen affiliation in nearly one-half of
P. cruentum proteins shown in Figure 1D).
Lastly, we examined whether the observed signal of RG

monophyly was contributed primarily or solely by nuclear-
encoded plastid-targeted proteins (i.e., whether they reflect
the evolution of the organelle rather than the host cell). To do
this, we analyzed all RG-exclusive and RG-shared proteins
(Figure 1D) with n ranging from 4 through 40. Using an
integrated pipeline that incorporates three independent
target-prediction approaches, we found that circa 40% of
the proteins that support RG monophyly at bootstrap R 90%
may be plastid targeted (253 of 742, 34.1% at n R 4; 119 of
283, 42.1% at n R 40; see Supplemental Experimental Proce-
dures). Although bioinformatic predictions of organelle target-
ing are clearly provisional, these results suggest that in
addition to the expected significant contribution to plastid
function by proteins that unite the RG (i.e., the vast majority
of these taxa are photoautotrophs), over one-half of them
may not be destined for the plastid.

Enrichment of Red Algal Genes Enhances
Our Understanding of Eukaryote Evolution

To investigate the impact of increasing the number of genes
available from mesophilic red algae in comparison to use of
the genes of C. merolae alone, we applied the reciprocal
BLASTp best-hits approach using C. merolae proteins as the
query against our database. In this case, however, we
excluded P. cruentum and C. tuberculosum from the data-
base. With this approach, we found 127 proteins that showed
exclusive gene sharing with red algae, of which 39 (31%)
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provided evidence for the RG grouping. Therefore, inclusion of
our novel red algal genome data results in a nearly 4-fold
increase in the number of red algal genes (145 versus 39)
that support exclusive gene sharing among RG taxa.

Our findings also show that red algal genes are distributed
among diverse eukaryote lineages that in many instances
(e.g., Stramenopiles, Cryptophyta, Haptophyta) are most
certainly explained by endosymbiotic gene transfer because
these taxa contain a red algal-derived plastid [5, 17, 18]. Of
the 474 proteins that show strong support for RG monophyly
(145 found only in RG [Figure 1A]; 329 with RG showing
exclusive monophyly at bootstrap R 90% [Figure 1D]), only
129 (27.2%) have homologs in C. merolae. Therefore, with
respect to testing the RG or Plantae hypothesis, the red algal
gene repertoire from P. cruentum and C. tuberculosum
contributes an almost 4-fold increase in the number of red
algal genes useful for phylogenomic analysis as compared
with C. merolae alone. In addition, only 1,207 (67% of 1,808)
genes with a history of gene sharing include homologs from
C. merolae, suggesting that the extent of gene transfer in
eukaryotes has been significantly underestimated in previous
phylogenetic analyses that relied on a more limited sample
of red algal genes.

In summary, we have uncovered clear evidence of RG
monophyly in our analysis of reciprocal BLASTp hits and indi-
vidual protein trees. No competing hypothesis rises to the
level of support that we found for the RG clade. Testing the
coherence of the Plantae hypothesis will require the addition
of complete genome data from Cyanophora paradoxa
and other glaucophytes. This is of great interest, because
the Plantae lineages provide an important opportunity to
advance our knowledge of the tree of life, the intricacies of
genome evolution among protists, and the origin of photosyn-
thesis in eukaryotes. For example, it has been known for some
time that Plantae share key traits that are usually, but not
exclusively, associated with photosynthesis and other plastid
functions, which strongly supports their union [17–20].
However, reliance on plastid characters (e.g., trees inferred
from organelle genes or nuclear-encoded plastid-targeted
proteins) may mislead phylogenetic inference if there has
been a complex gain-and-loss pattern of plastids (with associ-
ated intracellular gene transfers) amongPlantae lineages [6, 8].
Therefore, finding evidence of RG and ultimately Plantae
monophyly could greatly improve our understanding of plastid
endosymbiosis by tying together the lineages that share
a primary plastid, and therefore the innovations underlying
organellogenesis [21]. In contrast, Plantae polyphyly will lead
to more complex explanations of how primary plastids and
their supporting nuclear genes have been distributed among
algal lineages. In either case, what has become clear is that
concatenated protein data sets often fail to provide resolution
of ‘‘deep’’ nodes in the tree of life, including the Plantae (e.g.,
[3–6, 22]). We suggest that in light of our data, reliance on
the standard vertical inheritance model of gene evolution
to infer the eukaryote tree of life (e.g., [6, 22]) may need to
be critically reassessed on a gene-by-gene basis using an ex-
panded collection of protist genomes. For instance, although
providing support for phylum-level relationships, the V-type
ATPase I tree (Figure S2) reveals a complex history of gene
duplications that makes it a poor marker for species relation-
ships. More problematic is the recent finding of hundreds of
green algal-derived genes (that likely arose via ancient gene
transfers) in diatoms and other chromalveolates [23] that
play key roles in the cell [24]. These studies demonstrate
how much still remains to be understood about the evolu-
tionary history of protist genomes. Once a comprehensive
knowledge of gene history is gained, then the rapidly accumu-
lating genome data can be incorporated with more confidence
into multigene tree-of-life analyses. In summary, our work
demonstrates the importance of a rich mesophilic red algal
gene repertoire in testing controversial aspects of eukaryote
evolution and in enhancing our understanding of the complex
patterns of gene inheritance among protists.

Experimental Procedures

Generation of Expressed Sequence Tags from Porphyridium cruentum

Total RNA from Porphyridium cruentum CCMP1328 (Provasoli-Guillard

National Center for Culture of Marine Phytoplankton, Boothbay Harbor,

ME) was extracted (TRIzol, Invitrogen) and purified (QIAquick PCR Purifica-

tion Kit, QIAGEN) according to the manufacturer’s instructions. The cDNAs

were generated (Mint cDNA Synthesis Kit, Evrogen) from 2 mg of total RNA

and normalized (Trimmer cDNANormalization Kit, Evrogen). The normalized

cDNAs were sequenced (GS FLX Titanium, Roche/454 Life Sciences) at

the University of Iowa (Iowa City, IA), resulting in 386,903 EST reads. We

found no obvious evidence of contamination in the data set from other algal

sources or from bacteria based on a sequence similarity search aimed at

nontarget taxa (BLAST e value % 1025 [25]). We assembled the ESTs into a

total of 56,490 sequences with CAP3 [26] using the default settings, yielding

16,651 contigs and 39,839 singlets. To ensure that the phylogenetic signal

derived from these sequences was significant and biologically meaningful,

we excluded contigs of length < 150bases and singlets of length < 296bases

(median length for singlets) from subsequent analysis, resulting in 36,167

unigenes for phylogenomic analysis. The assembled ESTs are available at

http://dblab.rutgers.edu/home/downloads/. We generated six-frame trans-

lations for each of these EST unigenes for the phylogenomic analysis.

Partial Genome Data from Calliarthron tuberculosum

Fresh thalli of the coralline red alga Calliarthron tuberculosum were

collected from the low intertidal zone at Botanical Beach Provincial Park

on Vancouver Island, British Columbia, Canada (48� 310 43.46800 N, 124�

270 12.48500 W). Genomic DNA from the algal cells was extracted (DNeasy

Plant Mini Kit, QIAGEN) and sequenced (GS FLX Titanium, Roche/454 Life

Sciences) at the McGill University and Génome Québec Innovation Centre

(Montréal), resulting in circa 750 Mbp of data. These reads were assembled

using gsAssembler (Newbler) version 2.3 (Roche/454 Life Sciences) with

default parameters, resulting in 169,975 contigs totaling 51.1 Mbp. The

assembled mitochondrial (25,515 bases) and plastid (178,624 bases)

DNAs were removed prior to phylogenomic analysis. Proteins encoded by

these genome contigs were predicted using a machine learning approach

under a generalized hidden Markov model as implemented in AUGUSTUS

[27], in which protein models of Arabidopsis thaliana were used as the

training set. These predicted proteins were incorporated into our in-house

sequence database for subsequent phylogenomic analysis. All genome

contigs and predicted proteins of C. tuberculosum used in this work are

available at http://dblab.rutgers.edu/home/downloads/.

Analysis of Exclusive Gene Sharing

For this and all following phylogenomic analyses, we used an in-house data-

base consisting of all annotated protein sequences from RefSeq release

37 at GenBank (http://www.ncbi.nlm.nih.gov/RefSeq/), predicted protein

models available from the Joint Genome Institute (ftp://ftp.jgi-psf.org/

pub/JGI_data/), and six-frame translated proteins from EST data sets of

all publicly available algal and unicellular eukaryote sources, i.e., dbEST at

GenBank (http://www.ncbi.nlm.nih.gov/projects/dbEST/) and TBestDB

(http://tbestdb.bcm.umontreal.ca/), as well as data from P. cruentum and

C. tuberculosum (see above), totaling 10,469,787 sequences (Table S1).

Using 36,167 unigenes of P. cruentum as a query platform against the

database (BLASTp, e value % 10210), we found 1,409 genes to have hits

only in red algae and one other phylum. For each of the top five BLASTp

hits (or fewer, if there were fewer than five hits) for a P. cruetum protein

(among 1,409), we generated a list of hits via BLASTp searches against

our database. The sequence hits that were found in all of these lists

(including the P. cruentum protein) were grouped into a set. A protein set

consisting only of red algae and one other phylum represented a putative

case of exclusive gene sharing between the two phyla.

http://dblab.rutgers.edu/home/downloads/
http://dblab.rutgers.edu/home/downloads/
http://www.ncbi.nlm.nih.gov/RefSeq/
http://www.ncbi.nlm.nih.gov/projects/dbEST/
http://tbestdb.bcm.umontreal.ca/
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Of the 13,632 P. cruentum genes (37.7% of 36,167) that had significant

matches in our database (e value % 10210), 1,609 had matches restricted

to other rhodophytes, whereas the remainder had hits with diverse

prokaryote and/or eukaryote sources; these constituted the homologous

protein sets. We applied two sampling criteria to ensure a reasonable repre-

sentation of the diverse groupings, i.e., %5 bacterial subgroups, and no

single species, strain, or genome was represented >4 times. Sequence

alignments were generated with MUSCLE version 3.8.31 [28], and noninfor-

mative sites within the alignments were removed with Gblocks version

0.91b [29], with the options b3 = 200, b4 = 2, and b5 = h. We used a strict

set of criteria to ensure that the results obtained were phylogenetically

meaningful: (1) each protein family (hence alignment) had R4 members

but were limited to %100 members, and (2) phylogenetically informative

sites in each set of aligned protein sequences were R75 amino acid

positions. Under these criteria, 1,635 protein families were excluded. The

phylogenies for each of the remaining 12,003 protein alignments were

reconstructed using a maximum-likelihood approach [30] using the WAG

amino acid substitution model [31] with a discrete gamma distribution [32]

and nonparametric bootstrap of 100 replicates. All sequence alignments

and the resulting phylogenetic trees used in this study, including the trees

sorted by monophyletic relationships (distinct phyla R 3, number of

terminal taxaR 30) based on bootstrap support 70% and 90%, are available

at http://dblab.rutgers.edu/home/downloads/.

Accession Numbers

The sequenced EST reads from the normalized cDNAs of P. cruentum are

available at NCBI GenBank (http://www.ncbi.nlm.nih.gov/) under the acces-

sion numbers HS588189–HS975091. The 454 sequence data of C. tubercu-

losum are available at the NCBI Sequence Read Archive (http://www.ncbi.

nlm.nih.gov/sra) under the project accession number SRP005182.

Supplemental Information

Supplemental Information includes two figures, one table, and Supple-

mental Experimental Procedures and can be found with this article online

at doi:10.1016/j.cub.2011.01.037.
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